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Abstract

Focal plane arrays (FPA’s), used for remote sensing applications, are required to operate
at high temperatures and are subject to high terrestrial background fluxes. Typical
remote sensing applications like cloud/weather imagery, sea-surface temperature
measurements, ocean color characterization, and land-surface vegetation indices also
require FPA’s that operate from the visible through the LWIR portion of the spectrum.
This combination of harsh requirements have driven the design of a unique LWIR FPA,
that operates at 80K under 300K background conditions, with an operating spectral range
from 11.5um to 12.5um, and a spectral cutoff of 13.5um.

The FPA consists of 2 side by side arrays of 1x60 HgCdTe, (grown by molecular beam
epitaxy) photovoltaic, detector arrays bump bonded to a custom CMOS Si readout. The 2
arrays are completely independent, and can be operated as such. The readout unit cell
uses two, current-mode, analog building blocks; a Current Conveyor (CC1)' and a
dynamic current mirror’. The CCI has input impedance below 300 Ohms and an
injection efficiency that is independent of the detector characteristics. This combination
extracts high performance and excellent sensitivity from detectors whose average RoA
values are approximately 1.7 Ohm-cm?” at T=80K. The dynamic current mirror is used to
subtract high background photocurrent while preserving excellent dynamic range. In
addition to the performance enhancing readout, the detectors are manufactured with
integral microlenses and operated in reverse bias to take advantage of their increased
dynamic impedance. The dark currents associated with reverse bias operation are
subtracted along with the background photocurrents by the dynamic current mirror.

The expected and measured LWIR FPA performance will be presented. Measurements
were performed on an LWIR FPA. Expected and measured FPA results are shown in the
table below. The expected data are calculated from FPA models and compared to the
measured values.



PEAK AVERAGE MINIMUM AVERAGE
DSTAR DSTAR RMS NOISE | RMS NOISE RESPONSE
(Jones) (JONES) {Volts) {Volts) {(Volts)
CALCULATED 3.1E+11 9a1uv 1.8
MEASURED >3.0E+11 1.88E+11 ImV 6.2mV 1.4

Table 1: Summary Results Table

1.0 INTRODUCTION

This paper describes the modeled and measured hybrid, LWIR, FPA performance. The
FPA was designed for typical remote sensing applications.

2.0 DETECTOR TECHNOLOGY

The diode technology used to implement this focal plane array (FPA) is long wave
infrared (LWIR), P on N, photovoltaic, Mercury Cadmium Telluride (HgCdTe), grown
by molecular beam epitaxy (MBE) on CdZnTe substrates. The diodes have a spectral
cutoff wavelength of Ac=13.5um, and have average Roa products of 1.7 2-cm® when

operated at T=80K. The diodes are formed in two side-by-side linear arrays of 60 diodes
each. Each diode has physical dimensions of 250um in the long direction and 72.lum in
the narrow direction, for a total area of 1.80E-4 cm” (See Figure 3). Integral microlenses

are produced on each diode to reduce the active area of the diode and thereby increase
diode yield. The dimensions of the active area of each diode are S5um x 40pum, for a
total area of 2.20E-5 cm”. Table 2 is a compilation of relevant detector parameters.

T (K) 80

RoA (Q-cm:) i

Cd (Farads) 1.08E-12
QE 74
Detector Bias -70mV
RdA (Q-cm’) 170

Idark (-70mV) Amps 97.5nA
Phi Background (Ph/cm’-s) 1.93E+15
Phi Max (Ph/cm™-s) 2.80E+15
Microlens Area (cm’) |.80E-4 j
Active Area (cm:_} 2.20E-5

Table 2: Measured Detector Characteristics




3.0 AMPLIFIER ARCHITECTURE

The LWIR diodes have an average zero bias source resistance of 77k . This low source
resistance makes the LWIR diodes extremely difficult to interface to conventional direct
injection (DI) and buffered direct injection (BDI) circuits. Both the DI and BDI suffer
from low injection efficiency and lack of detector bias control. To overcome the
Shortcomings of the conventional architectures, an amplifier was designed with increased
injection efficiency and reduced input impedance. The amplifier provides detector bias
control. The amplifier has provisions for removing DC offsets from diode dark and
background currents and suppresses low frequency detector noise.

Each detector amplifier unit cell consists of a current conveyor (CC1) followed by a
dynamic current mirror and integration capacitor, the schematic is shown in Figure 1.

Figure 1: Unit Cell Amplifier Architecture (CCI)

The unit cell is followed by a sample and hold buffer amplifier, sample and hold,
multiplexer amplifier, multiplexer and output buffer, a complete block diagram is shown
in Figure 2.

The CC1 presents less than 300 Ohms input impedance to the diode, with an injection
efficiency that is independent of the diode characteristics. Careful matching of the
transistors M 1-MS5 can give an injection efficiency of 1°. The CC1 also provides accurate
bias control for the diode. The dynamic current mirror restores dynamic range by
subtracting off DC current components. The dynamic current mirror also reduces any
low frequency detector noise components. The readout was fabricated at AMI using their
standard .6um CMOS process. The layout of the complete IC is shown in Figure 3.
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5.0 HYBRID SIMULATION AND MEASURED RESULTS

The hybrid characteristics are compiled in Table 3. The schematic used for simulation
and the simulation results are shown in Figures 1 and 4

Tint (sec) 47.76us

Cint (Farads) 1.54pF

Vswing (Volts) 1.8 Volis

Full Well Capacity 19.3E+6 electrons
Snapshot S/H Frame time equal Tint (95% duty cycle)
Cal Time 500us
Interval between Cal 3s

Table 3: Amplifier Characteristics
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Figure 4: Simulation Results of Signal Integration

It was discovered via flux measurements on the Microlenses that they only transmit 28%
of the incident light. All of the fluxes quoted in this text are adjusted for this reduction.
The calculated hybrid performance characteristics are shown in Table 4. The measured
amplifier noise floor and FPA total RMS noise are shown in Figures 5 and 6. The
calculated value of total RMS noise, 960.55uV, compares very well with the minimum

measured value of 1mV as shown in Figure 6. 36% of the pixels have total RMS noise

less than or equal to 1E-3 Volts. The calculated value of peak Dstar, 3.13E+11 compares
very well with the peak measured value of 3.9E1 1, as shown on the Dstar plot in Figure




7. 29% of the pixels have Dstars above 3.0E+11 and 55% of the pixels have Dstars
above 2.0E+11. An NEI plot is shown in Figure 8. The minimum array NEI is 1.23E+12,
with an array average NEI of 1.95E+13. Superimposed Oscilloscope plots of response
are shown in Figure 9. The background level shown in the figure corresponds to a flux of
1.93E+15 photons/cm’-s. The 2 other curves shown in Figure 9 correspond to fluxes of
2.15E+15 and 3.47E+15 Respectively. A measured response linearity plot is shown in
Figure 10. The response is linear but quite non-uniform. No uniformity correction was
applied to any of the Hybrid measurements.

Readout Thermal Noise 335.55uV
Readout 1/f Noise 53.33uvV
Readout Switch Noise 29.94uV
Total Amp Noise M4 1pV
Detector Dark Shot Noise 535.89uV
Photon Shot Noise 431.93uvV
Detector 1/f Noise 559.2uV

| Total Detector Noise 886.82uV
Total Noise 960.55pV
Peak Dstar 3. I3E+11 Jones

Table 4: Calculated Performance Characteristics

| TDetGate Noise as a Function of TDetGate Bias - 56|
During Normal Operations, Vcas=1.8, Vdet=4.93 |

| 5.0E-04 —

4.5E-04 L\+ kl'::_,,__k —'r— _~, JY, J_ \ \
4.0E-04 i ‘ 4‘% | ‘ '| T JI_ |
i | .

3.5E-04

| L | o
3.06-04 | . i, | “l__f‘ik E

Noise (V)

2.56-04 ! l ' ! (S, (N S
00 0.5 1.0 15 2.0 25 3.0 35 4.0 ‘
Tdetgate Bias (V) |

Figure 4: Measured Amplifier Noise Floor
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Figure 7: Measured Dstar Skyline Plot for FPA
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Figure 9: Oscilloscope Trace of Array Response
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Figure 10: Measured Response

6.0 SUMMARY

A LWIR hybrid FPA was designed and manufactured for use in remote sensing
applications. Simulated and measured results were compared.
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Abstract

Focal plane arrays (FPA’s), used for remote sensing applications, are required to operate
at high temperatures and are subject to high terrestrial background fluxes. Typical
remote sensing applications like cloud/weather imagery, sea-surface temperature
measurements, ocean color characterization, and land-surface vegetation indices also
require FPA’s that operate from the visible through the LWIR portion of the spectrum.
This combination of harsh requirements have driven the design of a unique LWIR FPA,
that operates at 80K under 300K background conditions, with an operating spectral range
from 11.5um to 12.5um, and a spectral cutoff of 13.5um.

The FPA consists of 2 side by side arrays of 1x60 HgCdTe, (grown by molecular beam
epitaxy) photovoltaic, detector arrays bump bonded to a custom CMOS Si readout. The 2
arrays are completely independent, and can be operated as such. The readout unit cell
uses two, current-mode, analog building blocks; a Current Conveyor (CC1)! and a
dynamic current mirror”. The CCI has input impedance below 300 Ohms and an
injection efficiency that is independent of the detector characteristics. This combination
extracts high performance and excellent sensitivity from detectors whose average RoA
values are approximately 1.7 Ohm-cm’ at T=80K. The dynamic current mirror is used to
subtract high background photocurrent while preserving excellent dynamic range. In
addition to the performance enhancing readout, the detectors are manufactured with
integral microlenses and operated in reverse bias to take advantage of their increased
dynamic impedance. The dark currents associated with reverse bias operation are
subtracted along with the background photocurrents by the dynamic current mirror.

The expected and measured LWIR FPA performance will be presented. Measurements
were performed on an LWIR FPA. Expected and measured FPA results are shown in the
table below. The expected data are calculated from FPA models and compared to the
measured values,
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PEAK AVERAGE MINIMUM AVERAGE
DSTAR DSTAR RMS NOISE | RMS NOISE RESPONSE
(Jones) (JONES) (Volts) (Volts) {Volts)
CALCULATED 3.1E+11 961uV 1.8
MEASURED >3 0E+11 1.88E+11 ImV 6.2mV 1.4

Table 1: Summary Results Table

1.0 INTRODUCTION

This paper describes the modeled and measured hybrid, LWIR, FPA performance. The
FPA was designed for typical remote sensing applications.

2.0 DETECTOR TECHNOLOGY

The diode technology used to implement this focal plane array (FPA) is long wave
infrared (LWIR), P on N, photovoltaic, Mercury Cadmium Telluride (HgCdTe), grown
by molecular beam epitaxy (MBE) on CdZnTe substrates. The diodes have a spectral
cutoff wavelength of Ac=13.5um, and have average Roa products of 1.7 Q-cm’ when

operated at T=80K. The diodes are formed in two side-by-side linear arrays of 60 diodes
each. Each diode has physical dimensions of 250pum in the long direction and 72.1um in
the narrow direction, for a total area of 1.80E-4 cm® (See Figure 3). Integral microlenses

are produced on each diode to reduce the active area of the diode and thereby increase
diode yield. The dimensions of the active area of each diode are S5um x 40um, for a
total area of 2.20E-5 cm”. Table 2 is a compilation of relevant detector parameters.

T(K) 80

RoA (Q-cm’) 1.7

(Cd (Farads) 1.08E-12
QE .74
Detector Bias -70mV
RdA (Q-cm’) 170
Idark (-70mV) Amps 97.5nA
Phi Background (Ph/cmi’-s) 1.93E+15
Phi Max (Ph/cm’-s) 2.80E+15
Microlens Area (sz} 1.80E-4
Active Area (cm’) 2.20E-5

Table 2: Measured Detector Characteristics
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3.0 AMPLIFIER ARCHITECTURE

The LWIR diodes have an average zero bias source resistance of 77k €2. This low source
resistance makes the LWIR diodes extremely difficult to interface to conventional direct
injection (DI) and buffered direct injection (BDI) circuits. Both the DI and BDI suffer
from low injection efficiency and lack of detector bias control. To overcome the
Shortcomings of the conventional architectures, an amplifier was designed with increased
injection efficiency and reduced input impedance. The amplifier provides detector bias
control. The amplifier has provisions for removing DC offsets from diode dark and

background currents and suppresses low frequency detector noise.

Each detector amplifier unit cell consists of a current conveyor (CC1) followed by a
dynamic current mirror and integration capacitor, the schematic is shown in Figure 1.

|
i~

—= i

= om

Figure 1: Unit Cell Amplifier Architecture (CC1)

—

\

AS AMENDFRT
/o omA

The unit cell is followed by a sample and hold buffer amplifier, sample and hold,
multiplexer amplifier, multiplexer and output buffer, a complete block diagram is shown

in Figure 2.

The CC1 presents less than 300 Ohms input impedance to the diode, with an injection
efficiency that is independent of the diode characteristics. Careful matching of the
transistors M1-MS5 can give an injection efficiency of 1°. The CC1 also provides accurate
bias control for the diode. The dynamic current mirror restores dynamic range by
subtracting off DC current components. The dynamic current mirror also reduces any
low frequency detector noise components. The readout was fabricated at AMI using their

standard .6um CMOS process. The layout of the complete IC is shown in Figure 3.
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Figure 3: Layout of Detector Amplifier IC



5.0 HYBRID SIMULATION AND MEASURED RESULTS

The hybrid characteristics are compiled in Table 3. The schematic used for simulation

and the simulation results are shown in Figures | and 4
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Figure 4: Simulation Results of Signal Integration

It was discovered via flux measurements on the Microlenses that they only transmit 28%
of the incident light. All of the fluxes quoted in this text are adjusted for this reduction.
The calculated hybrid performance characteristics are shown in Table 4. The measured
amplifier noise floor and FPA total RMS noise are shown in Figures 5 and 6. The
calculated value of total RMS noise, 960.551V, compares very well with the minimum
measured value of 1mV as shown in Figure 6. 36% of the pixels have total RMS noise
less than or equal to 1E-3 Volts. The calculated value of peak Dstar, 3.13E+11 compares
very well with the peak measured value of 3.9E11, as shown on the Dstar plot in Figure



7. 29% of the pixels have Dstars above 3.0E+11 and 55% of the pixels have Dstars

above 2.0E+11. An NEI plot is shown in Figure 8. The minimum array NEI is 1.23E+12,
with an array average NEI of 1.95E+13. Superimposed Oscilloscope plots of response
are shown in Figure 9. The background level shown in the figure corresponds to a flux of
1.93E+15 photons!cmz—s. The 2 other curves shown in Figure 9 correspond to fluxes of
2.15E+15 and 3.47E+15 Respectively. A measured response linearity plot is shown in
Figure 10. The response is linear but quite non-uniform. No uniformity correction was AS AMENDED

apphed to any of the H}’bﬂd measurements. /__b‘ [:’Tf 1

]
Readout Thermal Noise 335.55uvV \
Readout 1/f Noise 53.33uV \l
Readout Switch Noise 29.94pv '
Total Amp Noise 341.1pV |
l
|
Detector Dark Shot Noise 535.89uV
Photon Shot Noise 431.93uV
Detector 1/f Noise 559.2uV
Total Detector Noise 886.82uV |
|‘
Total Noise 960.55uV
Peak Dstar 3.13E+11 Jones
Table 4: Calculated Performance Characteristics
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Figure 4: Measured Amplifier Noise Floor
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Figure 7: Measured Dstar Skyline Plot for FPA
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Figure 9: Oscilloscope Trace of Array Response
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Figure 10: Measured Response

6.0 SUMMARY

A LWIR hybrid FPA was designed and manufactured for use in remote sensing
applications. Simulated and measured results were compared.
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